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Stochastic coherence �SC� and self-induced stochastic resonance �SISR� are two distinct mechanisms of
noise-induced coherent motion. For interacting SC and SISR oscillators, we find that whether or not phase
synchronization is achieved depends sensitively on the coupling strength and noise intensities. Specifically, in
the case of weak coupling, individual oscillators are insensitive to each other, whereas in the case of strong
coupling, one fixed oscillator with optimal coherence can be entrained to the other, adjustable oscillator
�i.e., its noise intensity is tunable�, achieving phase-locking synchronization, as long as the tunable noise
intensity is not beyond a threshold; such synchronization is lost otherwise. For an array lattice of SISR
oscillators, except for coupling-enhanced coherence similar to that found in the case of coupled SC oscillators,
there is an optimal network topology degree �i.e., number of coupled nodes�, such that coherence and syn-
chronization are optimally achieved, implying that the system-size resonance found in an ensemble of noise-
driven bistable systems can occur in coupled SISR oscillators.
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I. INTRODUCTION

Rhythm generation is a long-standing problem in science,
particularly in biological and cognitive science contexts
�1,2�. A paradigm of this kind of self-sustained oscillating
behavior in nonlinear systems is offered by the limit cycle.
Even in the absence of a limit cycle, however, internal
rhythms can be generated in nonlinear systems due to the
effect of noise. This phenomenon is the so-called noise-
induced coherent motion, which has become an active topic
mostly because of its enormous relevance in numerous ap-
plications in such fields as engineering, physics, biology, and
medicine �3�. There are two distinct mechanisms that can
generate such a motion: One is stochastic resonance �SR�,
where noise at a proper intensity can optimize the response
of a nonlinear system to a subthreshold periodic signal �4�, or
where a dynamical system near but before a Hopf or saddle-
node bifurcation threshold is driven by small noise without a
periodic signal, then the original potential limit cycle is ca-
pable of being excited, and the excited limit cycle emerges
right after the bifurcation �the phenomenon in the latter case
is traditionally called coherent resonance� �5�. Such features
of SR oscillators are well known and often called coherence
resonance, autonomous stochastic resonance, or stochastic
coherence �6–10�. However, for clarity we prefer and will
use the term stochastic coherence �SC� instead of coherence
resonance because the former emphasizes the stochastic in-
ducement of periodicity �coherence� in which there may be
no explicit “resonance” effect �10–12�. The other mechanism
is self-induced stochastic resonance �SISR� described re-
cently in �13–15�, which is effective within a larger distance
from the bifurcation point.

Lee DeVille et al. �14� analyzed what controls the degree
of coherence in SC and SISR of the FitzHugh-Nagumo sys-

tem, and classified their very different properties. They found
that SC arises only at the onset of bifurcation and is rather
insensitive to variations in noise intensity. In contrast, SISR
may arise away from bifurcation, and the property of noise-
induced coherent motion is controlled by the noise intensity.
A question naturally arises: How do these oscillators behave
when they interact �e.g., in the case of interacting SC and
SISR oscillators, interacting SC oscillators, or an array
lattice of coupled SISR oscillators�?

Coupled SC oscillators have demonstrated some interest-
ing phenomena, e.g., noise-enhanced phase synchronization
�16�, noise-induced spatiotemporal pattern formation
�15,17,18�, noise-enhanced wave propagation �19,20�, array-
enhanced stochastic resonance �21–23�, and array-enhanced
coherence resonance �24–27�. Another interesting phenom-
enon is the system-size resonance found in an ensemble of
noise-driven bistable systems �28�. These phenomena indi-
cate that interacting SC oscillators have rich dynamical be-
haviors. Accordingly, we can expect that interacting SISR
oscillators or interacting SC and SISR oscillators might have
properties similar to but also different from those found in
interacting SC oscillators.

The purpose of this paper is to describe the effect of in-
teraction between SC and SISR oscillators, and across popu-
lations of SISR oscillators, and, in particular, to describe the
mechanism and properties of noise-induced and array-
enhanced coherent resonance in these kinds of interacting
stochastic oscillators. We will characterize the related coher-
ence by the signal-to-noise ratio �S� and the timing precision
of information processing by the mean firing rate �M�. By
numerical simulation, we find that for interacting SC and
SISR oscillators S and M of individual oscillators basically
remain independent in the case of weak coupling, whereas
one fixed oscillator with optimal coherence can be entrained
to the other, adjustable oscillator �i.e., its noise intensity is
changeable� in the case of strong coupling, and the two os-
cillators possess different S and M when the noise intensity*mcszhtsh@mail.sysu.edu.cn
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of the adjustable oscillator goes beyond a threshold. For an
array lattice of SISR oscillators, except for coupling-
enhanced coherence similar to that found in the case of
coupled SC oscillators, there is an optimal network topology
degree �i.e., number of coupled nodes�, such that coherence
and synchronization are optimally achieved, implying that
system-size resonance, an interesting stochastic synchrony
found first in an ensemble of noise-driven bistable systems,
can occur in interacting SISR oscillators.

II. CHARACTERISTICS OF COHERENCE AND PERIOD
IN SC AND SISR OSCILLATORS

As is well known, the FitzHugh-Nagumo �FHN� system is
a simple but representative model of excitable neurons �29�.
We will study the following version of the FHN model per-
turbed by noise:

�ẋ = x − x3/3 − y + ���1�t� , �1�

ẏ = x + a + �2�t� , �2�

where x and y represent the fast activation variable and slow
recovery variable, respectively; � �we fix �=0.01 throughout
this paper� and a are a time scale and a bifurcation param-
eter, respectively; and �i�t� �i=1,2� are assumed to be inde-
pendent Gaussian noise sources with zero mean and correla-
tion ��i�t�� j�t���=Di�ij��t− t��, i=1,2, in which Di represents
the intensity of noise �i�t�. In the absence of noise, for �a�
�1 the system has only a stable fixed point corresponding to
the quiescent state of this system, while for �a��1 there ex-
ists a globally stable limit cycle. When an appropriate ran-
dom perturbation �D1�0 or D2�0� acts on the system, the
trajectories of the variables x�t� and y�t� in the so-called
excitable regime characterized by �a��1 eventually exit the
attraction basin of the stable fixed point, and return to it after
a large excursion �forming a pulse� in phase space. The regu-
larity of the pulses demonstrates coherent motion in a noisy
environment. For an appropriately chosen a�1, we can have
SC and SISR oscillators which correspond to D1=0, D2�0
and D2=0, D1�0, respectively. For the SC and SISR oscil-
lators, some features about coherence were described in Ref.
�14�, but here we describe them in different ways and obtain
some additional results.

To measure the temporal coherence of noise-induced mo-
tion, we introduce an index, denoted by S and defined as

S =
�Tk�t

�var�Tk�
, �3�

where Tk=�k+1−�k �here �k is the time until the kth firing of
the noise-induced oscillator� stands for the distribution of
pulse duration, and �¯�t denotes an average over time. This
index describes the ratio between the average of interspike
interval and its standard deviation, and is actually a kind of
signal-to-noise ratio in the sense of periodic signals with
repetitive firings at a fixed interval. Biologically, this quan-
tity is of importance because it relates to the timing precision
of information processing in the neural system �30�. In addi-
tion, we introduce the mean firing rate M =1 / �Tk�t for a se-

quence of spikes 	�k
 �i.e., the inverse of the mean interspike
interval�, which describes the degree to which the neural
system encodes information. We are mainly interested in the
effect of noise intensities Di and the parameter a on S and M.
All involved stochastic equations throughout this paper are
numerically solved using the Heun algorithm with step size
�=10−3 �31�.

Figures 1�a� and 1�b� show the dependence of S on both
noise intensity and the parameter a, where Fig. 1�a� corre-
sponds to the SC oscillator �D1=0� and Fig. 1�b� to the SISR
oscillator �D2=0�. A similar feature that is apparent in the
cases of SC and SISR oscillators is in stochastic coherence,
e.g., for some a near but larger than 1, there is an optimal
noise such that S has a maximum in both cases. However,
there is a significant difference between the two cases, e.g.,
for the same value of a, S of SISR is about three times that of
SC, indicating that the degree of coherent motion in SISR is
dramatically higher than that in SC. Although S decreases
monotonically with increase of a in both cases �implying that
the coherence is reduced when the bifurcation parameter a
departs from the threshold of bifurcation�, it is always higher
in SISR than in SC for the same pair of parameter values in
the parameter region �Di ,a�. In particular, S with a=1.50 in
SISR is roughly equivalent to S with a=1.01 in SC. Another
outstanding difference appears in that the coherence in SC
arises only on the onset of bifurcation, whereas the coher-
ence in SISR may arise far from the bifurcation point and
persist even in a broad parameter region of a �according to
Ref. �14�, a can be up to �3�.

Figures 1�c� and 1�d� show the dependence of the mean
firing rate M on both noise intensity D1,2 and the parameter
a, respectively. For a given a, this dependence also shows a
significant difference in the cases of SC and SISR. Specifi-
cally, in the case of SC, M increases as D2 increases in the
low-level noise region, but takes a stable value when D2 is
beyond a threshold, indicating that the mean firing rate is
rather insensitive to noise intensity. In contrast, M in the case
of SISR is always a monotonically increasing function of D1,
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FIG. 1. �Color online� Dependence of S and M on both noise
intensity log10�D1� or log10�D2� and parameter a: �a�,�c� D1=0 cor-
responds to the SC oscillator; �b�,�d� D2=0 corresponds to the SISR
oscillator.
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and even can reach an arbitrary value at a large enough D1,
suggesting that the mean firing rate is susceptible to noise
intensity in the case of SISR, and that D1 can thus be used as
a controllable parameter for M from the viewpoint of control
theory. In spite of this difference in the mean firing rate be-
tween the two situations, there are similar features, e.g., M
gradually drops for a fixed D1 or D2 in both cases as a
increases.

To take a step closer to reality, two noise sources should
be simultaneously taken into account in the FHN system,
since the fast variable corresponding to the membrane poten-
tial is subjected to fluctuations and the recovery variable as-
sociated with the refractory property of a neuron is often
noisy �32,33�. Figure 2�a� illustrates the coherence with fixed
a=1.05 in the simultaneous presence of two noise sources,
used to mimic the competition of combined SC and SISR
oscillators. Three features should be noted. First, there is a
pronounced maximum of the signal-to-noise ratio S with re-
spect to D1 as D2→0 or with respect to D2 as D1→0. In
particular, the system �1� and �2� exhibits the characteristics
of SC in the case that D1→0 vanishes in the limit, and the
characteristics of SISR in the case that D2→0 vanishes in
the limit. In other words, SC dominates in the former case
whereas SISR dominates in the latter case. Second, if S is
considered as a function of D1 while D2 is kept at some fixed
value, its maximum value at a certain D1 value is insensitive
to slow variable fluctuation for some D2�10−3.0. However, it
drops rapidly as D2 increases but keeps D2�10−3.0, indicat-
ing that the slow variable fluctuation may violate coherence.
Finally, we consider S as a function of D2 for two different
ranges of values of D1. For D1�10−3.0, S shows one maxi-
mum as D2 is varied, indicating that the SC mechanism
dominates the dynamics, whereas for D1�10−3.0, it de-
creases monotonically as S increases, implying that the noise
in the membrane potential can enhance the coherence of the
whole system.

Figure 2�b� plots the mean firing rate M as a function of
both D1 and D2. For low-level noise, e.g., D1�10−3.0 and
D2�10−3.0, both noise sources cooperatively produce a se-
ries of pulses, but the pulse events in a given time interval
are rather rare, consequently leading to a small M. In par-
ticular, in the interval of small noise intensity D1, M almost
stays constant with respect to D2. However, the noise from
the fluctuation of the membrane potential can drastically af-
fect the mean firing rate, e.g., M quickly increases as D1
increases at a fixed D2.

III. INTERACTING SC AND SISR OSCILLATORS

Synchronization phenomena not only can take place in a
deterministic system composed of regular oscillators, but
also can emerge between interacting stochastic oscillators in
a statistical sense. The phase locking of two interacting SC
oscillators has been investigated �34–36�. In this section we
focus on the question to what extent interacting SC and SISR
oscillators adjust their respective phases so as to attain some
kind of synchronization, and vice versa. For simplification,
based on discussions in the previous section, we consider the
following mathematical model:

�ẋ1 = x1 − x1
3/3 − y1 + g�x2 − x1� , �4�

ẏ1 = x1 + a1 + �1�t� , �5�

�ẋ2 = x2 − x2
3/3 − y2 + g�x1 − x2� + ���2�t� , �6�

ẏ2 = x2 + a2, �7�

where ai �i=1,2� are the bifurcation parameters of SC and
SISR oscillators, respectively; g represents coupling
strength; and �i�t� �i=1,2� are independent Gaussian noise
sources with zero mean and correlation ��i�t�� j�t���
=Di�ij��t− t��, i=1,2 �where Di is the intensity of noise �i�t�
�i=1,2��. In simulations, we set a1=a2=1.05 to make com-
parisons between the noise-induced coherence of two sto-
chastic oscillators. Note that for such fixed parameter values
both uncoupled systems have a stable fixed point in the
absence of noise.

For the SC or SISR oscillator in the interaction case, as in
the previous section, we may introduce the corresponding S
and M, which are respectively used to measure the temporal
coherence of noise-induced motion and to describe the mean
firing rate. In addition, we introduce an instantaneous phase
for each individual oscillator,

�i�t� = 2	
t − �k

i

�k+1
i − �k

i + 2	k, �k
i 
 t � �k+1

i , �8�

where �k
i is the time until the kth firing of the ith oscillator

�i=1 corresponds to a SC oscillator and i=2 to a SISR os-
cillator�, which is defined in the simulation as the moment of
crossing the threshold x=1.0 of xi�t�. Finally, we introduce
an ordering parameter R= �sin2���1�t�−�2�t�� /2��t �here
�¯�t denotes the time average� to measure the phase syn-
chronization effect between SC and SISR oscillators �such a
definition for the order parameter was adopted in Refs.
�24,37��.

In order to investigate the interaction between SC and
SISR oscillators, we consider the following two situations
separately: �1� a fixed SC oscillator and an adjustable SISR
oscillator; �2� a fixed SISR oscillator and an adjustable SC
oscillator. Here, a fixed SC or SISR oscillator means that the
isolated SC or SISR oscillator �i.e., uncoupled oscillator� is
associated with an optimal noise source that induces the
“best” coherent motion, and consequently the corresponding
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FIG. 2. �Color online� Signal-to-noise ratio S and mean firing
rate M in the competitive situation of combined SC and SISR os-
cillators: �a� S as a function of both log10�D1� and log10�D2�; �b� M
as a function of both log10�D1� and log10�D2�. In �a� and �b�, a
=1.05 and �=0.01.
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S has the maximal value, whereas for an adjustable oscillator
the coherence of the oscillator can be tuned using the noise
intensity.

First, we examine the case 1 under two situations of weak
and strong coupling �here a “weak coupling” means that the
interacting SC and SISR oscillators do not achieve synchro-
nization for this coupling strength; otherwise we have
“strong coupling”�. For a weak coupling strength, e.g., g
=10−2.0, the interacting oscillators seem independent of each
other. Figure 3�a� shows that the S of the fixed SC oscillator
is not affected by the adjustable SISR oscillator. Also, the
two oscillators cannot show any collective behavior in the
sense of phase synchronization �Fig. 3�b��, frequency locking
�Fig. 3�c��, or the ratio of mean firing rates �Fig. 3�d��. When
the coupling strength increases, the two oscillators gradually
become sensitive to each other. In particular for strong cou-
pling �e.g., g=10−1.0�, this sensitivity becomes apparent, as
indicated in Fig. 4. In this case, the fixed SC oscillator can be
entrained to the adjustable SISR oscillator at a low noise
intensity �D2�, so that the two stochastic oscillators achieve
phase synchronization and display stochastic frequency lock-
ing �Fig. 4�d��, when the noise intensity is below a threshold.
However, as D2 goes beyond the threshold, the frequency
locking spreads out because the SISR oscillator fires more
frequently than the SC oscillator, so that the difference of
average period between the two stochastic oscillators be-
comes larger, as shown in Fig. 4�c�. In other words, the syn-
chronization achieved between the two oscillators can be
violated when D2 is large enough. Moreover, during the
gradual disappearance of the achieved synchronization, the S
of the SISR oscillator undergoes a continuous decrease and
is always below that of the SC oscillator. Within the domain

D2� �100 ,101.0�, the mean firing period of the SISR oscilla-
tor goes down, but the firing becomes more regular and the
coherence drops until some critical level of the noise �D2

=10−1.5�. In particular, as the noise intensity exceeds 10−1.0,
the firing occurs more frequently, but the phase locking and
frequency locking start to disappear. More interestingly, the
S of the SC oscillator rises again after a minimum value,
although the coherence of the SISR oscillator is being re-
duced all the time. This is mainly because our coupling is
introduced in the fast variable. Consequently, the coupling
effect can be viewed as the introduction of a noisy perturba-
tion to the SC oscillator, leading to another local maximal S.
Therefore, this case can be described as competition between
combined SC and SISR oscillators, where the dominant os-
cillator is the SISR oscillator �see Fig. 2�.

Next, we investigate the case 2 in the weak and strong
coupling situations. In the case of weak coupling, the results
are basically similar to Fig. 3, as shown in Fig. 5, where the
interacting oscillators cannot show any phase synchroniza-
tion except for one case of frequency locking �D1�10−1.25�.
However, in the case of strong coupling, different phenom-
ena from those demonstrated in Fig. 4 are observed, as
shown in Fig. 6. At a low noise intensity D1, the adjustable
SC oscillator does not influence the fixed SISR oscillator,
where the former has the same S as the latter. With a further
increase of D1, the coherence of both oscillators is reduced,
and at the same time they gradually lose the achieved syn-
chronization. Note that the relative positions of the two
curves �for SC and SISR� in Fig. 6 are just opposite to those
in Fig. 4 in the nonsynchrony region. This difference can be
explained through the effect of two different noise sources.
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FIG. 3. �Color online� Coherence and synchronization in the
case of the fixed SC oscillator and adjustable SISR oscillator with
weak coupling g=10−2.0. �a� The coherence factor S vs noise inten-
sity D2. �b� The order parameter R vs D2. �c� The mean firing period
of the SC �MSC� and of the SISR oscillator �MSISR� vs D2. �d� The
ratio of frequencies of SC �FSC� and SISR oscillator �FSISR� vs D2.
In �a�,�c� the purple circles and green triangles correspond to SC
and SISR, respectively. In �a�–�d�, D1=10−2, and the polynomial
curves have been fitted to the data to aid the eye.
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FIG. 4. �Color online� Coherence and synchronization in the
case of fixed SC oscillator and adjustable SISR oscillator with
strong coupling g=10−1.0. �a� The coherence factor S vs noise in-
tensity D2. �b� The order parameter R vs D2. �c� The mean firing
period of the SC �MSC� and of the SISR oscillator �MSISR� vs D2.
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SC and SISR, respectively. In �a�–�d�, D1=10−2, and the polynomial
curves have been fitted to the data to aid the eye.
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In Fig. 4, the fast variable fluctuation plays a constructive
role in the interacting oscillators, e.g., for moderate noise
intensities, the fluctuation can enhance the global coherence.
In particular, a very strong fast variable noise in one sub-

system can produce the maximal S in the other subsystem,
but the first subsystem sacrifices its own coherence. In con-
trast to the fast variable noise, slow variable fluctuation can
destroy the global coherent motion. In addition, there is an
opposite relation between the mean firing periods �or mean
firing rates� in strong coupling for cases 1 and 2 when the
noise intensity in the adjustable oscillator is beyond a thresh-
old, which can be shown by comparing Fig. 4�c� and Fig.
6�c� or Fig. 4�d� and Fig. 6�d�. Moreover, the period of the
adjustable oscillator drops faster than that of the fixed oscil-
lator, implying that the synchronization of interacting SC and
SISR oscillators is gradually lost �see Fig. 4�b� and Fig. 6�b��
as the noise intensity in the adjustable oscillator moves be-
yond a threshold. The differences between cases 1 and 2 can
be further shown by comparing Fig. 4�a� and Fig. 6�a�. In
fact, the curves in Fig. 6�a�, unlike those in Fig. 4�a�, are
monotonically decreasing. �This is possibly because the in-
put stimulus to the SISR oscillator from the SC oscillator
cannot induce a good coherent resonance of the SISR oscil-
lator but has a destructive effect on its coherence as the noise
intensity in the adjustable SC oscillator goes beyond a
threshold.�

In summary, whether or not the interacting SC and SISR
oscillators achieve phase synchronization sensitively de-
pends on both the coupling strength and noise intensities.
More precisely, an appropriate coupling strength can make
the interacting SC and SISR oscillators achieve phase syn-
chronization if the noise intensity of the adjustable oscillator
does not go beyond a threshold, and otherwise the achieved
synchronization can also be lost.

IV. ARRAY-ENHANCED SISR

Neurons may be coupled in various forms and receive
fluctuating stimuli simultaneously from their neighboring
units. Here, we consider a common form of coupling, i.e., a
chain of N locally coupled FHN systems, and study the effect
of interplay between coupling and noise on coherence. The
mathematical equations are

�ẋi = xi − xi
3/3 − yi + g�xi+1 + xi−1 − 2xi� + ���i1�t� , �9�

ẏi = xi + ai + �i2�t� , �10�

where ��ik�t�� jl�t���=Dk�ij�kl��t− t��, i , j=1, . . . ,N, k , l=1,2,
Dk represents noise intensity, and g is the coupling strength.
We assume the periodic boundary condition x0=xN, and that
ai is a random variable uniformly distributed in �a0−�a ,a0

+�a� �24,25,38�. In the following, we set N=100, and let
a0=1.05, �a=0.05 �we use the same set of various 	ai
 from
the uniform distribution for all simulations for each run�. We
try to determine how the coherence and cooperative dynam-
ics of the interacting subsystems depend on coupling
strength and noise intensity. For this, we introduce several
definitions. �1� We define the instantaneous phase for indi-
vidual oscillators, as in Eq. �8�. �2� The ordering parameter is
defined as
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�FSISR� vs D1. In �a�,�c� the purple circles and green triangles cor-
respond to SC and SISR, respectively. In �a�–�d�, D2=10−2, and the
polynomial curves have been fitted to the data to aid the eye.
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noise intensity D1. �b� The order parameter R vs D1. �c� The mean
firing period of the SC �MSC� and of the SISR oscillator �MSISR� vs
D1; �d� The ratio of frequencies of SC �FSC� and SISR oscillator
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respond to SC and SISR, respectively. In �a�–�d�, D2=10−2, and the
polynomial curves have been fitted to the data to aid the eye.
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R = �Ri,j�t = lim
T→�

�
0

T  1

M
�
i�j

Rij�t��dt, M = N

2
� , �11�

which is a natural extension of the definition given in the
previous section, where �¯�t denotes the time average and
¯ indicates the ensemble average. Here, the quantity

Ri,j�t� = sin2�i�t� − � j�t�
2

� �12�

is used to measure the phase synchronization effect of neigh-
boring elements �24�. In this way, the numerical simulations
display that R�0.5 in the unsynchronized regime, whereas
R�0 in the synchronization regime. �3� We also compute the
coherence factor S and mean firing rate M of the chain based
on the distribution of pulse intervals of all N oscillators, i.e.,
S=Si, M =Mi �. . . stands for the ensemble average over neu-
rons�, where

Si =
�Tk

i �t

�var�Tk
i �

, �13�

Mi = 1/�Tk
i �t �14�

are the signal-to-noise ratio and mean firing rate of the ith
individual neuron �i=1, . . . ,N�, respectively.

It should be pointed out that array-enhanced coherence
has been investigated in Refs. �24–27�, but the setup of the
system in our case is different from those papers in the fol-
lowing manner: The fast variable x and the slow variable y
are perturbed by the noise either individually or simulta-
neously, and heterogeneity resulting from the random ai is
considered. However, similar features in the dependence of S
and R on g and D are obtained, in contrast to those reported
in Refs. �24–27�.

The three-dimensional parameter diagrams, as shown in
Figs. 7�a� and 7�b�, plot the signal-to-noise ratio S as a func-
tion of both noise intensity D1,2 and coupling strength g.
Figure 7�a� with fixed D1=0.0 and Fig. 7�b� with fixed D2
=0.0 correspond, respectively, to coupled SC oscillators and
coupled SISR oscillators. These two figures exhibit similar
features in shape. For a very weak coupling �g�10−2.0�, both
S’s as a function of noise pass through a maximum and dis-
play coherent motion similar to that observed in a single SC
or SISR oscillator. With increase of the coupling strength g,
the oscillators mutually excite their neighboring elements.
Heuristically, coupling favors coherent motion over incoher-
ent motion by increasing S and decreasing R, as shown in
Figs. 7�a�, 7�b�, and 8�a�. In the limit of high coupling, the
oscillators are rigidly connected but behave as a single oscil-
lator. Consequently, the degree of synchronization �R� ap-
proximates to zero, where a pronounced SC scenario is ob-
served again, which looks like a “huge” stochastic oscillator
induced by noise. In addition, as the coupling strength gradu-
ally increases from a small value, the S peak positions shift
from low- to high-level noise. These numerical results indi-
cate that coupling can greatly enhance the self-induced sto-
chastic resonance in a heterogeneous array of coupled FHN

neurons, similar to array-enhanced coherence resonance. In
this case, we prefer instead to use the term array-enhanced
self-induced stochastic resonance.

However, there are significant differences between the ef-
fects of noise in array-enhanced SC and array-enhanced
SISR, as shown in Fig. 7�c�. In the following, we analyze
these differences.

First, we analyze the occurrence of peaks, valleys, and
plateaus in coherence �see Figs. 7�a�–7�c��. By using S in
Fig. 7�b�, denoted by SSISR, and S in Fig. 7�a�, denoted by
SSC, we define �S=SSISR−SSC, the difference between the
coherence factors of the coupled SC oscillators and coupled
SISR oscillators �25�. Note the following points. �1� There is
a broad peak in the parameter region in Fig. 7�c�, indicating
that the SISR oscillators in the lattice are more regular than
the SC oscillators for most of the parameter values. The gain
in S is a consequence of the dominion of the single SISR
oscillator and the insensitivity of SISR oscillators to the het-
erogeneity of parameter a, in comparison with SC oscilla-
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tors. �2� A valley emerges with a particular combination of
the coupling strength and noise intensity. In the relevant re-
gion, the coupled “SISR oscillators” no longer oscillate be-
cause of the strong coupling and relatively small noise in the
fast variable, leading to S=0. However, for the same param-
eter values, the coupled SC oscillators still generate moder-
ate coherent motion; thus S�0. Therefore, the appearance of
a valley can be observed as a result of �S�0 �see Fig. 7�c��.
�3� We find one pronounced plateau located in the region of
strong coupling strength and low noise intensity, where no
firing event is observed in either SC or SISR situation, re-
sulting in the same S value. Note that the difference �S is
almost equal to or less than zero near the plateau, implying
that the coupled SC oscillators have more robust synchro-
nized firings than the coupled SISR oscillators. By combin-
ing the results of Fig. 7, we conclude that coupled SISR
oscillators would have higher reliability than coupled SC os-
cillators in information processing.

Second, we investigate the synchronization of stochastic
oscillators in the simultaneous presence of two types of noise
source. For this, we assume D�D1=D2. Coupled stochastic
oscillators can display both partial and complete synchroni-
zation. The main synchronization features are displayed in
Fig. 8�a�. For a very weak coupling, the oscillators are es-
sentially independent and behave as if isolated, so that the
phase difference between neighboring oscillators follows a
uniform random distribution on �0,2	�, and consequently
R�0.5. With increase of the coupling strength, the interact-
ing systems display clustering of synchronization, as shown
in the slope of Fig. 8�a�. However, they can also demonstrate
complete phase synchronization, where all the elements are
locked to a common firing rate in the limit of high coupling,
as seen in the plateau shown with R�0. The above results
indicate that interaction between elements in the coupled
systems not only causes synchronization of the firing process
induced by independent noises, but also greatly improves the
coherence of the noise-induced motion.

Finally, we also investigate how the coupling strength and
noise intensity affect the mean firing rate, as shown in Fig.
8�b�. For a fixed D, M displays a local maximum as g
changes, which corresponds to the situation where all oscil-
lators are locked to a relatively large firing frequency. On the
other hand, for a given coupling strength g, the M’s of SC
and SISR seem to increase as D increases.

V. THE EFFECT OF NETWORK TOPOLOGY DEGREE ON
COHERENCE

In real networks, one node possibly receives signals from
many other nodes. Assume that each node is a stochastic
oscillator �SC or SISR oscillator� and receives signals of
equal number from its neighboring nodes; this common
number is called the network topology degree in this paper.
A question naturally arises: How does the network topology
degree affect the coherence of the whole interacting system?
In this section, we will investigate a one-dimensional array
of locally coupled SISR oscillators with a random distribu-
tion of the parameter a. The corresponding equations of mo-
tion are

�ẋi = xi − xi
3/3 − yi + g�

j=1

k

�xi+j + xi−j − 2xi� + ���i�t� ,

�15�

ẏi = xi + ai, �16�

where ��i�t�� j�t���=Di�ij��t− t��, i=1, ¯ ,N, Di represents
the noise intensity, g is coupling strength, and ai is the bifur-
cation parameter of the ith subsystem �i=1, . . . ,N �=100��.
To mimic the diversity of coupled neurons, we assume that
these ai obey a uniform distribution with mean a=1.05 and
�a=0.05. x−i=xN−i, i=1, . . . ,N, due to the circular property
of the network topology, and k is the number of signals that
each stochastic oscillator receives from the other units. In
this paper we call a coupled system with the coupling form
of Eqs. �15� and �16� a density-coupled system. Note that
k=1 corresponds to nearest-neighboring coupling and
k= �N /2� to all-to-all coupling. Note that the change of k
from small to intermediate to large values corresponds to
network variation from sparsely coupled to intermediately
coupled to densely coupled network, respectively.

Through numerical experiments, we find that the number
k has different influences on the coherence of the coupled
systems under different coupling strengths, as shown in Fig.
9 �g=10−2.5� and Fig. 10 �g=10−2.0�. The different values of
k lead to different maxima of S �see Figs. 9�a� and 10�a��.
Moreover, the synchronization effect characterized by the or-
dering parameter R �Eq. �11�� also depends on k �see Figs.
9�b� and 10�b��, where for a fixed noise intensity, S in gen-
eral decreases with increase of k �in other words, the larger k,
the larger the synchronization region generally�. More inter-
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estingly, for a small coupling strength �e.g., g=10−2.5�, the
maximum of S as a function of k first goes down slowly with
increase of k �see the inset of Fig. 9�c��, and then rises sud-
denly when k exceeds a certain threshold value ��6�. On the
other hand, for a slightly larger coupling strength �e.g., g
=10−2.0�, the maximum of S as a function of k has an optimal
value �see Fig. 10�c��. In other words, the coherence of the
network with intermediate coupling is “better” than the those
of sparsely and densely coupled networks. The results re-
ported in Fig. 11 show that for both sparsely and densely
coupled networks, the noise-excited oscillations appear to be
rather irregular, whereas for intermediate coupling the noise-
induced coherent oscillations are regular. This phenomenon
is similar to the system-size resonance found in an ensemble
of noise-driven bistable systems.

In addition, we also investigate the influence of k on the
mean firing period �see Figs. 9�d� and 10�d��. Surprisingly,
the mean firing period decreases as k increases in the case of
the sparsely coupled network �see the left part corresponding
to small values of k in Figs. 9�d� and 10�d��. As k goes
through a threshold �which depends on noise strength� and
further increases, the mean firing period begins to increase
gradually. More interestingly, we find that the relationship
between the mean firing period and the parameter k is linear
when k passes the threshold for a fixed noise intensity �see
the right part corresponding to large values of k in Figs. 9�d�
and 10�d��.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have numerically investigated the inter-
action effect of coupling strength and noise intensities on

coherence and synchronization in three cases: interacting SC
and SISR oscillators, an array of coupled SISR oscillators,
and density-coupled SISR oscillators. We have shown that,
for interacting SC and SISR oscillators, the coherence de-
pends not only on the coupling strength but also on noise
intensities. More precisely, for weak coupling, the two oscil-
lators are insensitive to each other, and the coupled system
does not show any synchronization, whereas for strong cou-
pling, a fixed stochastic oscillator can be entrained to the
other adjustable stochastic oscillator �implying a phase lock-
ing can take place; see Figs. 4�d� and 6�d�� when the noise
intensity of the latter is not beyond a threshold. Recently,
Musizza et al. �39� have investigated interactions between
cardiac, respiratory, and electroencephalogram � oscillators
in rats during anesthesia. They demonstrated that the three
types of stochastic oscillators have different interactions un-
der different phases in a noisy environment. Our results ob-
tained here are in basic accordance with the phenomena they
reported. In addition, for an array of coupled SISR oscilla-
tors, the effect of the array on coherence and synchronization
is basically similar to the case of similarly coupled SC oscil-
lators, but the array enhancement effect of the former is more
remarkable than that of the latter under the same parameter
conditions. For density-coupled SISR oscillators, we found
an interesting phenomenon, i.e., an appropriate network to-
pology degree induces optimal coherence. In other words,
the system-size resonance found first in an ensemble of
noise-driven bistable systems can take place in coupled SISR
oscillators.

Since the coherence in a single SISR oscillator is better
than that in a single SC oscillator �14�, it is not surprising
that many better properties for coherence resonance can oc-
cur in the case of interacting SISR oscillators than in the case
of interacting SC oscillators. However, if a SISR oscillator
interacts with a SC oscillator, whether or not coherence reso-
nance or some kind of synchronization can be achieved has
not been investigated before to our knowledge. Although we
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have obtained some interesting results for this, some deeper
questions deserve further investigation: Which of these two
oscillators is dominant when synchronization is achieved?
How does the parameter a affect coherence in interacting
systems? Does the coherence resonance depend on a bifur-
cation point in the interacting systems?

Although we have shown that an appropriate network to-
pology degree in density-coupled SISR oscillators can in-
duce the best coherence resonance, a more interesting ques-
tion is whether this property is generic. We will show that the
answer is positive �the result will be presented elsewhere�.
Thus, we conclude that interacting stochastic oscillators have
the following nice properties: array-enhanced coherence,
system-size-induced coherence resonance, noise-induced
phase synchronization, and network topology degree-
induced coherence resonance or network topology degree-
enhanced coherence. These properties altogether describe the
rich dynamics of interacting stochastic oscillators.

Finally, we point out that, although two types of noise are
observed in neurons, their competitive and cooperative ef-
fects and significance have not been fully elucidated. In our
findings, the noise of the fast variable �whose levels are as-

sociated with the voltage noise levels observed in real neu-
rons� may induce more coherent firing events. In addition, it
should be noted that the fast and slow noise effects demon-
strated here are quite general and can occur in other excitable
systems with multiple time scales. In fact, experimental in-
vestigations of two coupled neurons from Retzius neurones
of the leech �40� and from the stomatogastric ganglion of the
California spiny lobster Panulirus interruptus �41� have
showed various kinds of synchronization behaviors. The
mechanism presented here based on the FHN model should
be able to be used to interpret the experimental observations
on the reliability of spiking timing of neurons and shed fur-
ther light on understanding biological information processing
�42–45�. We expect that these findings will stimulate further
theoretical and experimental work which will significantly
improve the performance of noise-induced oscillators.
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